Exercise 29

Refer to the law of laminar flow given in Example 7. Consider a blood vessel with radius 0.01 cm , length 3 cm , pressure difference 3000 dynes $/ \mathrm{cm}^{2}$, and viscosity $\eta=0.027$.
(a) Find the velocity of the blood along the centerline $r=0$, at radius $r=0.005 \mathrm{~cm}$, and at the wall $r=R=0.01 \mathrm{~cm}$.
(b) Find the velocity gradient at $r=0, r=0.005$, and $r=0.01$.
(c) Where is the velocity the greatest? Where is the velocity changing most?
[TYPO: Replace " $\eta=0.027$ " with " $\eta=0.027$ poises," replace " $r=0.005$ " with " $r=0.005 \mathrm{~cm}$," and replace " $r=0.01$ " with " $r=0.01 \mathrm{~cm}$ ".]

Solution

Part (a)

According to the law of laminar flow on page 230,

$$
v=\frac{P}{4 \eta l}\left(R^{2}-r^{2}\right) .
$$

For a blood vessel with radius 0.01 cm , length 3 cm , pressure difference
3000 dynes $/ \mathrm{cm}^{2}=3000 \mathrm{~g} /\left(\mathrm{cm} \cdot \mathrm{s}^{2}\right)$, and viscosity $\eta=0.027$ poises $=0.027 \mathrm{~g} /(\mathrm{cm} \cdot \mathrm{s})$, it becomes

$$
v=\frac{3000 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}^{2}}}{4\left(0.027 \frac{\mathrm{~s}}{\mathrm{~cm} \cdot \mathrm{~s}}\right)(3 \mathrm{~cm})}\left[(0.01 \mathrm{~cm})^{2}-r^{2}\right] .
$$

If $r=0$, then

$$
v(0)=\frac{3000 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}^{2}}}{4\left(0.027 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}}\right)(3 \mathrm{~cm})}\left[(0.01 \mathrm{~cm})^{2}-0^{2}\right] \approx 0.925926 \frac{\mathrm{~cm}}{\mathrm{~s}} .
$$

If $r=0.005 \mathrm{~cm}$, then

$$
v(0.005)=\frac{3000 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}^{2}}}{4\left(0.027 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}}\right)(3 \mathrm{~cm})}\left[(0.01 \mathrm{~cm})^{2}-(0.005 \mathrm{~cm})^{2}\right] \approx 0.694444 \frac{\mathrm{~cm}}{\mathrm{~s}} .
$$

If $r=0.01 \mathrm{~cm}$, then

$$
v(0.01)=\frac{3000 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}^{2}}}{4\left(0.027 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}}\right)(3 \mathrm{~cm})}\left[(0.01 \mathrm{~cm})^{2}-(0.01 \mathrm{~cm})^{2}\right]=0 \frac{\mathrm{~cm}}{\mathrm{~s}} .
$$

Part (b)

Take the derivative of the velocity function with respect to r to obtain the velocity gradient.

$$
\frac{d v}{d r}=\frac{3000 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}^{2}}}{4\left(0.027 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}}\right)(3 \mathrm{~cm})}(-2 r)=-\frac{3000 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}^{2}}}{2\left(0.027 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}}\right)(3 \mathrm{~cm})} r
$$

If $r=0$, then

$$
\frac{d v}{d r}(0)=-\frac{3000 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}^{2}}}{2\left(0.027 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}}\right)(3 \mathrm{~cm})}(0)=0 \frac{\mathrm{~cm} / \mathrm{s}}{\mathrm{~cm}} .
$$

If $r=0.005 \mathrm{~cm}$, then

$$
\frac{d v}{d r}(0.005)=-\frac{3000 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}^{2}}}{2\left(0.027 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}}\right)(3 \mathrm{~cm})}(0.005 \mathrm{~cm}) \approx-92.5926 \frac{\mathrm{~cm} / \mathrm{s}}{\mathrm{~cm}} .
$$

If $r=0.01 \mathrm{~cm}$, then

$$
\frac{d v}{d r}(0.01)=-\frac{3000 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}^{2}}}{2\left(0.027 \frac{\mathrm{~g}}{\mathrm{~cm} \cdot \mathrm{~s}}\right)(3 \mathrm{~cm})}(0.01 \mathrm{~cm}) \approx-185.185 \frac{\mathrm{~cm} / \mathrm{s}}{\mathrm{~cm}} .
$$

Part (c)
The velocity is the greatest at $r=0$, and the velocity is changing the most at $r=0.01 \mathrm{~cm}$.

